a2 United States Patent

Britsch et al.

US009135018B2

US 9,135,018 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) COMPUTER CLUSTER AND METHOD FOR
PROVIDING A DISASTER RECOVERY
FUNCTIONALITY FOR A COMPUTER
CLUSTER

(75) Inventors: Matthias Britsch, Koenigswinter (DE);

Georg Fuchs, Rheinbach (DE); Colin
Hirsch, Perugia (IT); Andreas Florath,
Aachen (DE); Ralf Hager,
Wachtberg-Pach (DE)

(73) Assignee: DEUTSCHE TELEKOM AG, Bonn

(DE)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 384 days.

13/515,022
Dec. 10,2010

(*) Notice:

(21) Appl. No.:
(22) PCT Filed:
(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/EP2010/007522

Aug. 21, 2012

(87) PCT Pub. No.: W02011/069664

PCT Pub. Date: Jun. 16, 2011
(65) Prior Publication Data

US 2013/0007741 Al Jan. 3, 2013
Related U.S. Application Data

(60) Provisional application No. 61/285,737, filed on Dec.

11, 2009.
(30) Foreign Application Priority Data
Dec. 11,2009 (EP) cccovvvverierceceicrierce 09015371
(51) Imt.ClL
GO6F 9/455 (2006.01)
GO6F 9/44 (2006.01)
(Continued)
(52) US.CL
CPC GO6F 9/4401 (2013.01); GO6F 9/45558
(2013.01); GO6F 11/203 (2013.01);
(Continued)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,032,184 A *
6,199,179 Bl

2/2000 Coggeretal. 709/223
3/2001 Kauffman

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1909176 Al 4/2008
OTHER PUBLICATIONS

European Patent Office, International Search Report in International
Patent Application No. PCT/EP2010/007523 (Apr. 29, 2011).

(Continued)

Primary Examiner — Sisley Kim
(74) Attorney, Agent, or Firm — Leydig, Voit & Mayer, Ltd.

(57) ABSTRACT

A computer cluster includes: a first compartment, further
including a plurality of first physical nodes configured to
provide first resources for a first infrastructural virtual
instance and second resources for guest virtual instances; and
a second compartment, further including a plurality of second
physical nodes configured to provide third resources for a
second infrastructural virtual instance and fourth resources
for guest virtual instances. Each of the plurality of physical
nodes further includes a mass storage device, the mass stor-
age device further including: a partition provided for booting
the physical node; a partition as part of resources assigned to
an infrastructural virtual instance; and a partition as part of
other resources. The first infrastructural virtual instance and
the second infrastructural virtual instance are configured for
monitoring each other.

11 Claims, 3 Drawing Sheets

108

US 9,135,018 B2

Page 2
(51) Int.CL 2003/0172145 Al* 9/2003 NgUYen ...ccccoormrvrrvmeenn.e 709/223
GOGF 11/20 (2006.01) 3882;8%323; 2}* 1%882 gammg etlal ~~~~~~~~~~~~~~~ 711173
HO4L 29/08 (2006.01) 5008/0200016 Al 82008 Karve Ziihi
HO4L 29/14 (2006.01) 2009/0216910 Al 82009 Duchesneau
(52) U.S.CL 2009/0276771 Al 11/2009 Nickolov et al.

CPC ... GO6F11/2038 (2013.01); GO6F 2009/45575
(2013.01); GOGF 2009/45591 (2013.01); GOGF
2009/45595 (2013.01); HO4L 67/10 (2013.01);

HO4L 69/10 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS
7,213,246 Bl

7,448,079 B2
2002/0069369 Al

5/2007 Van Rietschote et al.
11/2008 Tremain
6/2002 Tremain

2010/0058342 Al
2010/0275204 Al
2011/0125894 Al*
2011/0126197 Al*

3/2010 Machida

10/2010 Kamura et al.
5/2011 Anderson et al. 709/224
5/2011 Larsenetal.cccooceenren 718/1

OTHER PUBLICATIONS

European Patent Office, International Search Report in International
Patent Application No. PCT/EP2010/007522 (Apr. 29, 2011).
Disk Partitioning, Wikipedia, Dec. 5, 2010.

* cited by examiner

U.S. Patent

Sep. 15, 2015

Sheet 1 of 3

US 9,135,018 B2

206a | ©

O\— 206b

106a S

N—106b

\204

Fig.1

U.S. Patent Sep. 15, 2015 Sheet 2 of 3 US 9,135,018 B2

308a ~ 73922 30564
O 1
O 1
O L 1
- —1
302n-/]
O O 0O E‘J I? O O
3047 \312
\3103 \B?Zba

108

Fig. 2

U.S. Patent Sep. 15, 2015 Sheet 3 of 3 US 9,135,018 B2

10
— — TN
11 12
31 34
21 32 41 [FF--pl42 [35 22
33 36

Fig. 3

US 9,135,018 B2

1
COMPUTER CLUSTER AND METHOD FOR
PROVIDING A DISASTER RECOVERY
FUNCTIONALITY FOR A COMPUTER
CLUSTER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a national stage entry under 35
U.S.C. §371 of International Application No. PCT/EP2010/
007522, filed Dec. 10, 2010, and claims priority to European
Patent Application No. EP 09015371.9, filed Dec. 11, 2009,
and U.S. Provisional Patent Application No. 61/285,737, filed
Dec. 11, 2009. The International Application was published
in English on Jun. 16, 2011, as WO 2011/069664 A1l.

FIELD

The present invention relates to a computer cluster and a
method for providing a disaster recovery functionality for a
computer cluster

BACKGROUND

An example of conventional computer clusters is described
e.g. in U.S. Pat. No. 7,448,079 B2.

Hosting of server based applications is a core element and
its business model is built around an economy of scale effect
with regards to specializing in the operation of server hard-
ware, networks or applications. Specialized departments or
whole companies manage these assets for customers in num-
ber oftens of thousands of hardware hosts or applications and
tens or hundreds of networks. Their mass service offerings
presume that either hardware or applications are provided to
the customer. In certain cases virtual machines are offered
with a restricted feature set. Both theory and best-practices
comply with the rule that organizational interfaces are in
optimal cases, built on external machine interfaces. Typically
this is hardware, in a way that the hoster handles only hard-
ware elements or an application interface. Access to machines
is limited to specific cases. In certain instances standard ofter-
ings for virtual machine hosting are available, yet these
machines have certain shortcomings, specifically that they
are restricted to one and only one server. It is not possible for
the customers to get customized network settings, dynamic
resizing of their hosted resources, etc.

SUMMARY

In an embodiment, the present invention provides a com-
puter cluster. The computer cluster includes: a first compart-
ment including a plurality of first physical nodes configured
to provide first resources for a first infrastructural virtual
instance and second resources for guest virtual instances,
each of the plurality of first physical further including a first
mass storage device, the first mass storage device including:
a first partition provided for booting the first physical node; a
second partition as part of the first resources assigned to the
first infrastructural virtual instance; and a third partition as
part of the second resources; and a second compartment
including a plurality of second physical nodes configured to
provide third resources for a second infrastructural virtual
instance and fourth resources for guest virtual instances, each
of the plurality of second physical nodes including a second
mass storage device, the second mass storage device includ-
ing: a fourth partition provided for booting the second physi-
cal node; a fifth partition as part of the third resources

10

15

20

25

30

40

45

50

55

60

65

2

assigned to the second infrastructural virtual instance; and a
sixth partition as part of the fourth resources. The first infra-
structural virtual instance and the second infrastructural vir-
tual instance are configured for monitoring each other.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.11s ablock diagram illustrating a virtual instance in a
physical node;

FIG. 2 is a block diagram illustrating a computer cluster in
accordance with an embodiment of the invention; and

FIG. 3 depicts schematically a computer cluster in accor-
dance with a further embodiment of the invention.

DETAILED DESCRIPTION

In an embodiment, the present invention provides a com-
puter cluster having better performance, more reliability at
lower hardware and/or operational costs than conventional
solutions.

In an embodiment, a computer cluster is provided, wherein
the computer cluster includes a first compartment and a sec-
ond compartment, wherein the first compartment includes a
plurality of first physical nodes, wherein the plurality of first
physical nodes provide first resources for a first infrastruc-
tural virtual instance and second resources for guest virtual
instances, wherein the second compartment includes a plu-
rality of second physical nodes, wherein the plurality of sec-
ond physical nodes provide third resources for a second infra-
structural virtual instance and fourth resources for guest
virtual instances, wherein each one of the plurality of first
physical nodes includes a mass storage device including:

afirst partition provided for booting the first physical node,

a second partition as part of the first resources assigned to

the first infrastructural virtual instance and

a third partition as part of the second resources,
wherein each one of the plurality of second physical nodes
includes a mass storage device including:

a fourth partition provided for booting the second physical

node,

a fifth partition as part of the third resources assigned to the

second infrastructural virtual instance and

a sixth partition as part of the fourth resources,
wherein the first infrastructural virtual instance and the sec-
ond infrastructural virtual instance are configured for moni-
toring each other.

In an embodiment, it is advantageously possible to build a
virtualized storage system with high reliability and high
availability because of two redundant compartments and two
infrastructural virtual instances (at least one infrastructural
virtual instance in each compartment) are monitoring each
other. Advantageously storage hardware changes (e.g. con-
figuration changes) are executable without any negative
impact to the second and fourth resources and to the guest
virtual instances. Customers using the guest virtual instances
will not notice that the hardware storage devices have under-
gone changes or have been inactive.

In an embodiment, an infrastructural virtual instance hosts
one process or a plurality of processes implemented in a
virtual instance, which is running on the same hypervisor as
the application guests and used to manage underlying physi-
cal nodes. Administrative virtual instances host general man-
agement processes, while infrastructural virtual instances
host processes managing underlying physical storage nodes
and providing redundancy mechanisms and data consistency
for the physical storage nodes.

US 9,135,018 B2

3

In an embodiment, the virtualized infrastructural instances
are connected in a master and slave relationship, wherein in
case that both the first infrastructural virtual instance and the
second infrastructural virtual instance are operational, one of
the first infrastructural virtual instance and the second infra-
structural virtual instance acts as a master virtual device and
the other acts as a slave virtual device, and in case that the
master virtual device fails the slave virtual device becomes
the master, and in case that only one of'the first infrastructural
virtual instance and the second infrastructural virtual instance
is operational, then the operational infrastructural virtual
instance is the master virtual device and the other infrastruc-
tural virtual instance is activated and becomes the slave vir-
tual device.

In an embodiment, the plurality of third partitions and the
first infrastructural virtual instance are connected in a first
storage network and wherein the plurality of sixth partitions
and the second infrastructural virtual instance are connected
in a second storage network. These storage networks are
preferably at least one out of the following: iSCSI networks,
networks using the Transmission Control Protocol/Internet
Protocol (TCP/IP) or Network Block Devices.

In an embodiment, the first compartment includes a first
militarized zone and a first demilitarized zone, wherein the
second compartment includes a second militarized zone and
a second demilitarized zone, wherein in the first militarized
zone only a restricted data exchange compared to the first
demilitarized zone is allowed, wherein in the second milita-
rized zone only a restricted data exchange compared to the
second demilitarized zone is allowed, wherein each first
physical node in the first militarized zone includes a seventh
partition as part of fifth resources for a first administrative
virtual instance, wherein each second physical node in the
second militarized zone includes an eighth partition as part of
sixth resources for a second administrative virtual instance.

In an embodiment, the plurality of second partitions are
connected in a RAID1 system and the plurality of fifth parti-
tions are connected in a further RAID1 system. In RAID1
(mirroring without parity or striping), data is written identi-
cally to multiple partitions (a “mirrored set”). The system
advantageously provides fault tolerance from partition errors
or failures and continues to operate as long as at least one
partition in the mirrored set is functioning.

In an embodiment, the second resources and the fourth
resources are provided for at least one telecommunication
application.

In an embodiment, the first infrastructural virtual instance
and the second infrastructural virtual instance provide disas-
ter recovery means.

In an embodiment, the computer cluster includes a third
compartment and a fourth compartment, wherein the third
compartment includes a plurality of third physical nodes,
wherein the plurality of third physical nodes provide seventh
resources for a third infrastructural virtual instance and eighth
resources for guest virtual instances, wherein the fourth com-
partment includes a plurality of fourth physical nodes,
wherein the plurality of fourth physical nodes provide ninth
resources for a fourth infrastructural virtual instance and
tenth resources for guest virtual instances, wherein the third
infrastructural virtual instance and the fourth infrastructural
virtual instance are configured for monitoring each other.
Therefore it is advantageously possible to provide a plurality
of pairs of redundant compartments.

15

20

40

45

50

4

In an embodiment, a method is provided for providing a
disaster recovery functionality for a computer cluster,
wherein

in case that both the first infrastructural virtual instance and

the second infrastructural virtual instance are opera-
tional, one of the first infrastructural virtual instance and
the second infrastructural virtual instance acts as a mas-
ter virtual device and the other acts as a slave virtual
device, and in case that the master virtual device fails the
slave virtual device becomes the master, and

in case that only one of the first infrastructural virtual

instance and the second infrastructural virtual instance is
operational, then the operational infrastructural virtual
instance is the master virtual device and the other infra-
structural virtual instance is activated and becomes the
slave virtual device.

In an embodiment,

in case that both the first administrative virtual instance and

the second administrative virtual instance are opera-
tional, one of the first administrative virtual instance and
the second administrative virtual instance acts as a mas-
ter virtual device and the other acts as a slave virtual
device, and in case that the master virtual device fails the
slave virtual device becomes the master, and

in case that only one of the first administrative virtual

instance and the second administrative virtual instance is
operational, then the operational administrative virtual
instance is the master virtual device and the other admin-
istrative virtual instance is activated and becomes the
slave virtual device.

In an embodiment, a computer cluster is provided for pro-
viding hosting services, including:

a plurality of nodes, the nodes being responsive to adminis-
trative requests; and

each node including a virtual instance such that each virtual
instance responds to user requests and appears to the user as
having its own operating system,

wherein any virtual instance shares the resources of the node.

In an embodiment, the computer cluster includes a virtu-
alized management system for managing the virtual
instances.

In an embodiment, it is advantageously possible that all
these resources are managed in an integrated way. Thus,
redundancy, resource changes, configuration changes and all
other operational processes on platform layer can be in
responsibility of the hoster and are executed without any
impact to the customers’ virtual machines and/or operational
processes. The customer will not notice that operational pro-
cesses, impacting hardware producing his resources have
undergone changes.

In an embodiment, a method is provided for providing
hosting services including:
forming a computer cluster from a plurality of nodes;
establishing a control system for coordinating functions of
the nodes; and
operating at least one virtual instance on each node, such that
each virtual instance responds to user requests;
providing an operating system virtualization means for con-
trolling the virtual instances.

Virtualized Management System for Virtual Platforms

In an embodiment, it is possible to provide a management
system. In virtualized environments, different hardware hosts
(in the following hardware hosts, hardware servers or hosts
are also called physical nodes) can be used to host the same
applications, thus, capacity resources can in principle be used
to provide spare redundancy. In case a specific physical node
fails, the virtual machines (in the following virtual machines

US 9,135,018 B2

5

are also called virtual instances) hosted on it can be restarted
on another hardware host. The boot device is not bound to
specific hardware.

Yet this requires that the platform is able to boot and run
also in case other hardware platforms fail and it requires a
management system which is able to run inside a virtual
machine inside the cluster it manages. Both management
system and platform are required to provide a certain set of
functionality to realize these features.

All hardware hosts are equipped with hard drives and the
control domains of the virtualization solution or the virtual-
ization solution itself boots from the local drives. This local
storage is not used for guest servers. Guest servers are con-
nected to external storage. Thus, all hosts are able to boot,
even in case of losses of external storage, i.e. all hosts are able
to boot independently from external storage.

All functions relevant for the guest systems, such as

guest server configuration files

DHCP, DNS, etc. server configuration files

TFTP and DHCP servers required for booting of guest

servers
are hosted on the control domain and are using data stored on
the local HDD of the control domain. The control domain
includes a communication system to contact other control
domains and exchange the necessary data. Communication
controls system wide write locks in case data is changed.

The communication system distributes all configuration
data over all control domains in the platform and ensures
consistency at any given point in time. This requires all com-
munication to take place in acknowledged mode and all
operations to be transaction based. All changes created by the
management system are distributed by the underlying mecha-
nism in a way the management system is not even aware that
the data is stored in a distributed way.

To perform the required operations in case of failure of
parts of the platform, each control domain requires an infra-
structural system embedded into the control domain. The
infrastructural system has to be able to select and execute
specific profiles, depending on environment triggers. Normal
operation tasks will be executed by the general management
system, the infrastructural system will primarily act in cases
of disaster, during reboot of the local control domain or parts
of the platform (e.g. after failure of fire compartment or site)
orin the wake of hardware faults. Examples for such rules are:

If the host (in the following also called physical node)

boots and no other control domain can be contacted
(handshake), just start all local infrastructure resources
(e.g. TFTP servers, DHCP server, DNS server, storage
server, etc) and wait for manual intervention by the
operator

If the host boots and more than 50% of the servers can be

contacted (handshake) and the local control domain is
configured to run global management system (compo-
nent 1) with the highest priority of all contacted nodes,
start all infrastructure resources and start management
system

In case the host boots and less than 50% of all other servers

can be contacted (handshake) and the external interface
of the other servers cannot be reached and the quorum
devices of these servers are not reachable, start all infra-
structure resources and the management system

In case the host boots and more than 90% of all other

machines are available and the global management sys-
tem is running, just boot the infrastructure resources and
wait for the management system to make use of the
control domains resources

10

20

30

35

40

45

50

6

The global management system has to cope with the fact
that it is managing virtual platforms on hosts, but all actions
can impact the own host as it is running on a host as well. The
management system thus has to be aware on which host it is
running. This information is accessible from the configura-
tion files of the control domains. All rules and manual actions
performed by and with the management system have to be
checked with a generic rule for impact on the own platform.

The management system has to be able to run inside a
virtual machine. This can be achieved easily by complying
with common implementation standards (e.g. not using pro-
cessors calls directly from the application or using real-time
operating systems).

The management system has to be able to operate on two
different sets of data. One set of data is related to application
servers, in this case virtual machines hosted on the platform.
These machines can be handled as any other server, with all
the data stored in a database handled by the management
system.

The management system has to be able to handle data
related to the control domain of the hardware hosts as well.
Data related to the hosts has to be stored on the hosts, as the
hosts have to be able to boot and subsequently start the man-
agement system which is required to run the virtual machines.
This sequence requires the necessary data to be stored on the
control domain, but managed by the management system.
Thus the management system will implement an abstraction
by integrating both sets of data into a meta-structure. For all
operations on this data, the management system will apply
transactions. A transaction shall not be considered to be fin-
ished until it is confirmed from all targets. In order to include
all targets into the scope, the management system has to wait
for transactions from all hardware hosts to be completed.

In case a standard management system should be used, the
corresponding functions have to be implemented into an
abstraction layer. This layer shall include the following func-
tions:

1) Alistofall control domains and hardware hosts included

in the system

2) Filter engine which is able to check all operations,
commands and file changes for relevance for the own
hardware host. In case the own hardware host is
addressed, the operation is to be stalled and either
responded with a corresponding error case or an SNMP
alert.

3) Meta-data structure, which allows to manage two dis-
tinct sets of data in a way transparent to the application
(the management system).

4) Fetch commands from the operating system and sort
them into two queues, one for application servers, one
for control domains.

5) All control domain queue operations are to be handled
by a transaction machine

6) All control domain queue operations have to be repeated
for all control domains

Impacted Components

Dedicated network resources can be created by assigning
VLAN and MPLS tunnels in a network to the connections of
a specific customer, thus separating the customers’ resources
for his exclusive use and shield his traffic completely from
any other customer. Standard Ethernet mechanisms, such as
802.1p extension and MPLS bandwidth management can be
used to ensure availability of the assigned resources. In an
embodiment, it is advantageously possible to:

dynamically reconfigure control domains’ network con-
figurations

US 9,135,018 B2

7

create abstraction by use of virtual network bridges, e.g.

termination mode: untag all VL.ANs

create a management system spanning dedicated network

devices (hardware switches) as well as software ele-
ments hosted both on general purpose hardware (e.g.
firewalls) and on virtualized hardware

Enhance control domains to make full use of the parameter

ranges enabled by network protocols (e.g. 4096 virtual
LANSs per Ethernet interface)

In this context network configurations mean VLLAN tags,
network interfaces’ IP addresses, static routes, binding to
(virtual switches), termination mode (untag VLLANSs or not),
name servers, default route, dhep activation status and server
address.

Servers need to be created in a way that they are connected
exclusively to the networks assigned to the customer. The
control domain has to be enhanced in order to allow access to
hardware resource relevant information (e.g. boot output) in
way that customers are not interfering with each other and
access of each customer is restricted to his own information.
Hardware related operational processes have to be possible
without interference with operational tasks of the customer,
in specific tasks related to the virtual servers, thus hardware
resources have to be independent from specific hosts (this can
be implemented based on live migration features of virtual-
ization technology). In an embodiment, it is advantageously
possible to

Enable control domains’ and virtual servers’ to migrate

even with full range of network setting parameters in use

Enable initrd and initramfs to boot in a virtualized environ-

ment, with storage abstracted by network protocols (e.g.
NPIV and iSCSI)

Enable operating systems (e.g. Linux) to boot via iSCSI in

multipath mode

Storage resources have to be enabled for dynamic creation
and resizing during operation in a way these changes do not
interfere with availability or uptime of the virtual server to
whom they are assigned. In the same way as virtual servers
have to be independent and abstracted from the server hard-
ware, storage resources have to be independent from specific
hardware, paths and they have to be abstracted from opera-
tional processes related to storage and, if existing, storage
networks. In an embodiment, it is advantageously possible to

Enable storage to be accessed via network protocols in

order to be able to cope with loss of paths or storage
redundancy

Create storage which is independent from access path

Build abstraction layer by a double iSCSI stack, e.g.:

Host: LVM, multi-device, iSCSI initiator

Abstraction layer: iSCSI target, LVM, RAID, iSCSI ini-
tiator

Storage Layer: iSCSI target, optionally LVM, physical
partition

This stack allows to use disks which are local to hosts in
a way that they can still be part of a highly available
platform and don’t force to move data on specific
hosts, which allows to make full use of all disk capac-
ity, regardless of the server they are connected to

The management system has to enable creation of all ele-
ments in the data center centrally as it has to maintain the
configuration database out of one hand Management system
multi-tenancy enabled. The customer has to be able to iden-
tify physical location of machines (rack and host awareness)
as well in order to assign virtual machines to hosts, sites,
racks, etc corresponding to the redundancy requirements of
his applications. In an embodiment, it is advantageously pos-
sible to create a multi-tenancy enabled management system,

15

20

25

35

40

45

50

55

60

8

which is able to run inside a virtual server instance which is
hosted on the platform which it is managing. In case the
management system is running outside the platform, redun-
dancy of the platform is linked to redundancy of the external
platform, thus implementation of the external management
platform requires solution of exactly the same problem as for
the production platform. This problems are solved by the
present invention, thus the management system can be placed
in a virtual platform and run on the highly available fault
tolerant platform.

To be considered is a set of rules, e.g. the management
system should not shut down its own host.

The platform has to be able to run without the management
system, e.g. resume operations based on latest configu-
ration

The control domains have to be enabled to distribute con-
figuration data

The control platforms have to be enabled to evaluate con-
figuration data

The control platforms are required to manage the run status
of all virtual platforms which are required to keep the
management system up and running (in specific the stor-
age stack and the virtual platform the management sys-
tem itself is running in)

Create GUIs for all functionality in a way that average
skilled operations staff can operate the platform and
only troubleshooting requires expert knowledge

Firewalls configured automatically in a way that the cus-
tomer can control the flow of traffic to and from his systems,
but not to others. The customer has to be able to identify
physical location of machines (rack and host awareness) as
well in order to build appropriate demilitarized zones and
militarized zones (DMZ/MZ architectures). The physical
nodes in the militarized zones include a plurality of seventh
partitions as part of fifth resources and a eighth partitions as
part of sixth resources for administrative virtual instances. In
an embodiment, it is advantageously possible by providing
these administrative virtual instances to

Build an algorithm to centrally manage all security relevant
settings and check for consistency

Derive connectivity matrix from configuration parameters
of virtual instances and automatic translation into fire-
wall rules which are updated dynamically

Enable automatic updating of all security settings, regard-
less of the instance in an service interruption free way

Manage all accounts centrally

Update account information to virtual instances based on
central repository (e.g. SVN interface to management
system)

The backbone connections have to be accessible for the
customer, who has to be able to configure all relevant routing
tables. In an embodiment, it is advantageously possible to

Manage backbone networks routes centrally, integrated
with the servers and the switch, VLAN, load balancer
and firewall settings

Store backbone networks configuration data centrally

Create interfaces to relevant equipment (e.g. MPLS route
reflection server)

This set of features enables a customer to configure and
order a full fletched data center without manual interaction
concerning hardware means on the provider side. All data can
be entered in the corresponding GUIs and as soon as payment
is guaranteed the customer can be informed, e.g. via mail or
any other communication method about his access details
(hostnames, usernames, passwords).

Application development currently includes the task to
design and implement all redundancy relevant functionality,

US 9,135,018 B2

9

as redundancy functions are application aware. In case of
virtualized environments, this can be changed. From the per-
spective of the virtual hardware (the resources managed by
the hypervisor) all software components are equivalent enti-
ties, the operating system processes of the virtual machines.
In order to provide hardware redundancy in a virtualized
environment, details of the process architecture inside the
virtual machine are not required.

The solution enables completely new business models,
moving from Software as a Service (SaaS) to Virtual Server as
a Service (VSaaS) to a yet undescribed offering “(virtual)
Data Center as a Service” (vDCaaS).

Provisioning of Virtual Machines

Operational processes of server platforms are organised
using layers. Layers include hardware, operating system,
middle ware and application layer. Interfaces suited to build
interfaces to external organisational units on them are avail-
able on application or on hardware layer. In an embodiment,
it is advantageously possible to build a reliable abstracting
interface between hardware resources and virtual machines.

In order to create a customer-provider interface between
hardware and operating system all functions which are avail-
able to the machine’s user (root account in Unix understand-
ing) are required. In addition, they have to be abstracted from
the underlying systems in a way that no mutual dependency or
impact is created between different virtual machines and
neither between virtual machines and the hosts.

Virtualization software (hypervisor) allows assigning
hardware devices to specific virtual machines. Common con-
sole output is required for the user of the virtual machine to
cope with potential issues around hardware assigned to the
virtual machines they are operating.

Implementation requires a virtual console device inside the
guest operating system and a virtual interface piping the
output into a file on the control domain or another server.
Customers can get access to this file by standard operating
systems means, such as Linux/Unix file descriptors or remote
access (e.g. ssh) providing limited access to only the relevant
files.

Resources on hardware level have to be visible, in order to
allow the users of virtual machines to run operational pro-
cesses, such as capacity planning. This requires knowledge
about actually available hardware resources, as measurement
on virtual level does not give correct numbers. Access to
information has to be restricted in a way that operators of
specific virtual machines can access exclusively data relevant
for their machines.

Information about assigned hardware resources is included
in configuration files of the hypervisor. Security relevant
access policies for these files can be realized by standard
operating system file descriptors. Advanced features can be
realized based on security enhanced systems (e.g. SELinux or
B.1 certified Solaris). For more convenient access from the
virtual machine, a virtual interface can be used which pre-
sents the hardware settings as virtual device inside one or
more guest systems.

The behavior of virtual machines is in addition to hardware
resources assigned to them, also defined by a broad range of
configuration elements. These configuration elements
depend on the type of virtual machine. An important example
is the redundancy setting, which defines the restart behavior
in case of failure.

A number of virtualization products do store history and
other virtual machine relevant log and configuration data in
databases or flat file systems in the control domain. Opera-
tional processes will require access or are granted access to
this data.

10

20

30

40

45

55

65

10

The approach allows operating virtual machines in the
same way as hardware servers.

Virtual High Availability and Disaster Recovery

In an embodiment, it is possible to use decoupling of stor-
age and enable shifting of applications across geographically
distributed sites.

In order to implement such a feature, the iSCSI target (the
controller component) needs to have the following character-
istics:

It has to expose its resources by industry standard iSCSI

It has to synchronize the status of all write commands
between all paths. This can be done by over any network
connection. The status has to be written for all portals in
a portal group; on whatever node they may be hosted.

In order to do that, all iSCSI discover and login events have
to be propagated to all controllers. This can be done by
using password and policy files shared for each portal
group, which are to be replicated to all nodes which host
portals of a group.

All controllers need to be able to connect to all storage
resources. This can be done by using any routable net-
work connection, e.g. IP, FC or Infiniband.

A storage resource must be mounted in a write lock enabled
way

Physical storage resources must provide the capability to
be abstracted, one possible solution is to use a standard
Unix operating system and use it’s function, e.g. 1 vm

Storage resources must provide the capability to be secured
against failure of one or more components e.g. by using
RAIDI1 systems or Reed-Solomon based replication

All traffic on all external interfaces must provide the option
to be encrypted

AlliSCSI functions must be available on the platform, but
not necessarily on a specific interface

Network layer mechanisms must be supported (e.g. VRRP,
routing protocols, etc)

In an embodiment, it is advantageously possible to provide
data redundancy by means of replication over arbitrary dis-
tances. Prerequisite for this solution is the availability of a
multipath solution, e.g., by iSCSI, NPIV or e.g. of distributed
block devices. Replication over arbitrary distances is cur-
rently hindered by the fact that a running storage host can
cause changes in its storage at any given moment in time.
Thus, replicating data to remote sites requires synchronous
replication. This means that each storage status change is
reported to the initiator, the storage host, only after the status
change is committed by all replication instances. This
decreases performance in case the distance to one or more
replication instances causes increased signal round-trip-
times.

In case a virtual machine is to be migrated to a distant host,
there is no issue with regards to the virtual machine itself as
migration is distant agnostic. The network has to be prepared
for such an action, in terms of bandwidth. Yet, the storage has
to be migrated in order to enable migration of the machine.
This can be done using iSCSI multipath exclusively or imple-
menting additional features in the storage node, enabling
enhanced migration.

This procedure creates the following prerequisites and
functions:

Create and implement the concept of “sites” which based
on area in which synchronous replication mode is pos-
sible based on actual signal round-trip-time in manage-
ment systems of servers, storage and network

US 9,135,018 B2

11

If 1P connectivity redundancy scheme requires certain pre-
requisites or intervention, both manual or automated,
implement the required mechanisms and triggers e.g.
route settings, etc

Implement in the format layer of the storage resources, e.g.
file system or block device, a configuration possibility
which is dynamically reconfigurable to switch all
objects inside the resources from synchronous to asyn-
chronous replication mode

Implement the actual replication mechanism, e.g. snap-
shots, copy-on-write, manipulation of inode table or any
other suited technology

Implement an algorithm which controls the switch from
asynchronous to synchronous replication mode and
back based on evaluation and projection of server load
and storage load

Implement algorithm to trigger the IP redundancy mecha-
nism

Implement “storage ballooning”. In detail, control the
scheduler of the virtualization solution or the resource
manager (depending on virtualization mode) of the stor-
age host from the same source as the replication of data
(and subsequent migration) is controlled in order to be
able to decrease the processor cycles (or resources in
general) until the performance of storage replication is
high enough to advance in replication even if the
machine is using up all (temporarily) assigned
resources.

Hardware Awareness

Redundancy configurations have to be able to consider
restrictions of the underlying hardware and topology, e.g.
creation of redundancy areas considering buildings, sites,
power supply areas, etc. Hardware names are supposed to be
accessible by standard means (e.g. host names). Specifics of
certain hardware types, e.g. availability of the hardware, have
to be configured manually.

The solution has to consider physical distance of machines
(“rack awareness”) in order to allow storage of data as close as
possible to the user. This information will be configured
manually. Distances between configured groups of nodes are
checked automatically and continuously by the system, based
on round trip times of application handshakes.

The solution has to be able to configure the degree of
redundancy separately for each object in a way that both the
number of copies to be stored and the number of copies
required for restoration of data can be configured separately
(n:m redundancy). This setting will be done manually. A
default will be used if no manual change is done.

In case the solution is implementing file systems, it has to
be able to run higher layer formats, independent from the
interface towards the host. This can be done creating software
functionality that replaces loop mount functionality.

All elements of the solution have to be able to run in a
virtualized environment. This can be ensured by using only
appropriate coding schemes, e.g. not using system calls in
case of native implementation or using run time environment
technologies.

The solution has to provide the capability to find each data
sniplet from each entry point. This will be done by labelling
each sniplet with an identifier which includes all information
required to link it to all other sniplets required to recreate that
data in style of a multiple linked list.

The solution has to provide the capability to relocate each
sniplet to each physical device. This will be done by using
continuous monitoring of uptime and resource usage of nodes
and apply optimisation algorithms to relocate and relabel

10

20

30

35

40

45

55

12

sniplets in case a certain node uses an amount of it’s resources
exceeding preconfigured thresholds. This feature has to be
abstracted from the hosts.

The solution has to be able to configure synchronous or
asynchronous replication for each data object. This will
enable time optimised handling of redundancy and prepara-
tion of e.g. migration of hosts to remote geographical loca-
tion, as required data can be replicated largely in asynchro-
nous mode, thus shortening the time frame in which the
performance of the host is impacted by the round trip time
increase of his storage operations. This will be implemented
by using a flag in the data header that indicates if a data object
or sniplet thereof is to be handled synchronous or asynchro-
nous.

The solution has to consider transmission time delays in
case of re-arranging or re-locating sniplets, while providing
the capability for an “enforcement” of both modes even if not
appropriate (e.g. in case synchronous mode is requested for
copying active sniplets to a remote site, creating delays due to
transmission delay, this can be required, however, to shift data
in a way that follows the migration of a virtual machine). This
will be implemented by using frequently performed access
round trip time measurements for specific machines and list-
ing them for all data sniplets belonging to one data object or
data objects itself. The response time will be defined by the
largest round trip time of the sniplets of one data object.

In case of failures of one or more nodes have the remaining
nodes to be able to resume operation seamlessly with the
remaining nodes and data objects or sniplets. This is achieved
by keeping all relevant data on all concerned nodes in parallel.
All data is to be stored, maintained and updated on all nodes
which are storing data objects or sniplets which are relevant
for this data.

Failure of a specific gateway shall not create any interrup-
tion in service, it merely leads to the fact that the failing node
is deleted from the list of status synchronization targets. This
is inherently included in the fact that all status changes are
replicated to all concerned nodes internally before the corre-
sponding response is sent to the host. Thus, the host can
access the storage platform by any number of independent
paths in parallel.

The solution has to provide the capability to take new nodes
added to the system in operation fully automatic and seam-
lessly for any other node.

Resource and Redundancy Management in Virtualized Envi-
ronments

Today’s software clusters provide redundancy by control-
ling dependencies between hard and software and interdepen-
dencies between processes. Thus to provide redundancy, pro-
cess architectures have to be modelled in the cluster
configuration. The invention aims to provide redundancy on
platform layer based on the availability of operating system
processes or the state of the virtual servers.

From the perspective of the virtual hardware (the resources
managed by the hypervisor) all software components are only
one entity, the operating system processes of the virtual
machines. In order to provide hardware redundancy in a vir-
tualized environment, details of the process architecture
inside the virtual machine are not required. However, man-
aging this redundancy in a way that all hardware hosts can be
considered spare capacity and thus spare redundancy for all
virtual machines requires two distinct levels of control.

First the control domain hosted on each hardware host has
to be able to act autonomously. (How this can be achieved is
described in “Distributed Architecture based Management
System for Control Domains™ and “Autonomy of virtualized
Hosts™). Second, the management system running the overall

US 9,135,018 B2

13

platform has to be able to cope with the specific environment.
This includes some specifics, most important are that it has to
be aware that it is running inside a virtual machine in order to
prevent it from creating a deadlock for itself and that it has to
be able to integrate two sets of data (the infrastructure, control
domain plus infrastructure guest and the application guests)
into a combined view.

However, in order to make full use of all possible redun-
dancy configurations, the management system has to be able
to work with a set of settings (which will be executed by the
control domains’ resource managers) which considers not
only a fixed assignment between active and spare capacity,
but also their location and their grouping.

The principle is as follows:

A matrix of classification parameters for all resources is
formed.

Classes of resources are created according to the type of
hardware, for each class a number of host pools is
defined

To all host pools “provider quotas” are assigned which
quantify the available resources

To all virtual machines “consumer quotas” are assigned
which represent the value of the respective application

To all virtual machines “priority quotas™ are assigned

Redundancy zones are defined, based on geographical and
environment conditions, e.g. sites, buildings on sites,
fire compartments inside buildings, etc. The crucial part
in this definition is to consider the distance from the
storage resources of such a redundancy zone which must
not exceed the distance which allows synchronous rep-
lication as long as no function as described in “Geo-
graphical Data Redundancy in fully virtualized Data
Centers” is deployed.

Redundancy zones are sorted in a hierarchical structure,
potentially with more than one redundancy zone on the
same hierarchy level

In case of resource losses are the following steps per-
formed:

First step is to check the ratio of local provider and con-
sumer quota. In case there are free resources inside the
same redundancy zone, the virtual servers running pre-
viously on the now unavailable resources are restarted
there

In case inside the same redundancy unit no resources are
free, available resources on the same host pool located in
different redundancy zones are checked for availability,
where the resources of the host pool are evaluated in the
order of hierarchy of the redundancy zone hosting them

In case no resources in the local host pool are available, the
consumer—provider quota relation is checked on all
host pools with the same classification (all host pools
which can serve as a failover target)

In case no free resources of the required class are available,
it is checked if the to be restarted resources have higher
“priority quotas” as other locally running virtual servers

In caseno free resources are available, the “priority quotas”
of'the applications of all other host pools are compared,
where the virtual servers of each host pool are evaluated
in the order of hierarchy of the redundancy zone hosting
them.

Provider Quotas are foreseen to norm the required
resources. This abstraction is required e.g. because different
versions of hardware providing different performance.
Norms are used to e.g. prevent counting of tiny capacities
over a huge number of servers which can in reality never be
used as each part contributing to the overall capacity is too
small for any virtual server. Priority quotas can be recalcu-

10

15

20

25

30

35

40

45

50

55

60

65

14

lated, e.g. in case a virtual server is hosting a database
required by numerous other servers it will get higher quotas
assigned, yet in case all these servers are down, the quota is
recalculated. Based on this mechanism, the overall platform
can rearrange the virtual servers for each situation and ensure
that always the virtual servers prioritized highest are provided
with resources while all usable resources are used.
Management System for Control Domains

The management system is composed of three components

Component 1: Common or global management system,
running in a virtual server on top of the platform

Component 2: communication system distributing all con-
figuration data over all control domains in the platform
and ensuring consistency at any given point in time.

Component 3: an infrastructural system of which one
instance exists in each control domain and operates only
on data and objects related to its own control domain. In
certain cases, e.g. live migration or restart, this may
include also cooperation with other control domains.

In this management architecture it is to be implemented:

Common management system (component 1) requires
some specific rules in order to cope with the fact that it is
running on the same platform as the managed virtual
servers

Common management system needs to be able to integrate
the control domain stored data in its data storage and
access architecture (data abstraction)

The infrastructural system has to be able to select and
execute specific profiles, depending on environment
triggers. Normal operation tasks will be executed by the
management system (component 1), the infrastructural
system will primarily act in cases of disaster, during
reboot of the local control domain or parts of the plat-
form (e.g. after failure of fire compartment or site) or in
the wake of hardware faults. Examples for such rules
are:

If the host boots and no other control domain can be
contacted (handshake), just start all local infrastruc-
ture resources (e.g. TFTP servers, DHCP server, DNS
server, storage server, etc) and wait for manual inter-
vention by the operator

If'the host boots and more than 50% of the servers can be
contacted (handshake) and the local control domain is
configured to run global management system (com-
ponent 1) with the highest priority of all contacted
nodes, start all infrastructure resources and start man-
agement system

In case the host boots and less than 50% of all other
servers can be contacted (handshake) and the external
interface of the other servers cannot be reached and
the quorum devices of these servers are not reachable,
start all infrastructure resources and the management
system

In case the host boots and more than 90% of all other
machines are available and the global management
system is running, just boot the infrastructure
resources and wait for the management system to
make use of the control domains resources

Geographical Data Redundancy in Fully Virtualized Data
Centers

In an embodiment, the present invention is aiming to pro-
vide data redundancy reached by replication over arbitrary
distances. Replication over arbitrary distances is currently
prevented by the fact that a running storage host causes
changes in its storage at any given moment in time. Thus,
replicating data to remote sites requires synchronous replica-
tion. This means that each storage status change is reported to

US 9,135,018 B2

15

the initiator, the storage host, only after the status change is
committed by all replication instances. This decreases perfor-
mance in case the distance to one or more replication
instances causes increased signal round-trip-times. Thus,
remote replication instances are only used in asynchronous
mode, which means that the commits send by these instances
are not used for committing status changes to the storage host
itself. Usually logic is included in the middle layer, such as a
file system able to handle snapshots and/or cow (copy-on-
write).

In case a virtual machine is to be migrated to a distant host,
there is no issue with regards to the virtual machine itself as
migration is distant agnostic. The network has to be prepared
for such an action, but there are several choices for that: layer
two connectivity over all sites or BGP rerouting are the obvi-
ous choices for external interfaces. Yet, the storage has to be
migrated in order to enable migration of the machine. This
requires synchronous replication, as asynchronous replica-
tion would leave the machine with the storage tied to the
original storage hardware.

The process to do a migration over arbitrary distances thus
is as follows:

Start migration of the storage in synchronous mode

After storage is replicated, move the entry point of the
machine to be migrated to the storage to the storage
interface nearest to the migration’s target hardware host

In case storage status change rate (writes) is to high to keep
the storage hosts performance, use “storage ballooning”
(description see below)

Start common live migration as implemented currently in
virtualization technology

As soon as migration is completed, switch off storage
ballooning

If 1P connectivity redundancy scheme requires action, per-
form it as soon as migration is completed (e.g. BGP
route change)

This procedure creates the following prerequisites and

functions:

Create and implement the concept of “sites” which based
on area in which synchronous replication mode is pos-
sible based on actual signal round-trip-time in manage-
ment systems of servers, storage and network

If 1P connectivity redundancy scheme requires certain pre-
requisites or intervention, both manual or automated,
implement the required mechanisms and triggers

Implement in the format layer of the storage resources, e.g.
file system or block device, a configuration possibility
which is dynamically reconfigurable to switch all
objects inside the resources from synchronous to asyn-
chronous replication mode

Implement the actual replication mechanism, e.g. snap-
shots, copy-on-write, manipulation of inode table or any
other suited technology

Implement an algorithm which controls the switch from
asynchronous to synchronous replication mode and
back based on evaluation and projection of server load
and storage load

Implement algorithm to trigger the IP redundancy mecha-
nism

Implement “storage ballooning”. In detail, control the
scheduler of the virtualization solution or the resource
manager (depending on virtualization mode) of the stor-
age host from the same source as the replication of data
(and subsequent migration) is controlled in order to be
able to decrease the processor cycles (or resources in
general) until the performance of storage replication is

10

15

20

25

30

35

40

45

50

55

60

65

16

high enough to advance in replication even if the
machine is using up all (temporarily) assigned resources
Service Virtualization and Component Virtualization
In order to create a fully dynamic offering, moving from
Software as a Service (SaaS) to Virtual Server as a Service
(VSaaS) to a yet undescribed offering “(virtual) Data Center
as a Service” (vDCaaS), current technology has to be
enhanced by a number of specific functions. A fully virtual-
ized data center requires a number of objects, which have to
be created and assigned to a customer by automated algo-
rithms. These objects are the following:
1) Dedicated local network resources
Dedicated network resources can be created by assigning
VLAN and MPLS tunnels in a network to the connec-
tions of a specific customer, thus separating the custom-
ers’ resources for his exclusive use and shield his traffic
completely from any other customer. Standard Ethernet
mechanisms, such as 802.1p extension and MPLS band-
width management can be used to ensure availability of
the assigned resources
2) Virtual servers
They need to be created in a way that they are connected
exclusively to the networks assigned to the customer.
The control domain has to be enhanced in order to allow
access to hardware resource relevant information (e.g.
boot output) in way that customers are not interfering
with each other and access of each customer is restricted
to his own information. Hardware related operational
processes have to be possible without interference with
operational tasks of the customer, in specific tasks
related to the virtual servers, thus hardware resources
have to be independent from specific hosts (this can be
implemented based on live migration features of virtu-
alization technology).
3) Storage
Storage resources have to be enabled for dynamic creation
and resizing during operation in a way these changes do
not interfere with availability or uptime of the virtual
server to whom they are assigned. In the same way as
virtual servers have to be independent and abstracted
from the server hardware, storage resources have to be
independent from specific hardware, paths and they
have to be abstracted from operational processes related
to storage and, if existing, storage networks. This canbe,
e.g., implemented on basis of iSCSI multipath, NPIV/
FC or distributed block devices.
4) Management System Functionality
The management system has to enable creation of all ele-
ments in the data center centrally as it has to maintain the
configuration database out of one hand Management
system multi-tenancy enabled
The customer has to be able to identify physical location of
machines (rack and host awareness) as well in order to
assign virtual machines to hosts, sites, racks, etc accord-
ing to the redundancy requirements of his applications.
5) Security settings
Firewalls configured automatically in a way that the cus-
tomer can control the flow of traffic to and from his
systems, but not to others. The customer has to be able to
identify physical location of machines (rack and host
awareness) as well in order to build appropriate DMZ/
MZ architectures
6) Dedicated backbone connections
The backbone connections have to be accessible for the
customer, who has to be able to configure all relevant
routing tables.

US 9,135,018 B2

17
The required implementations are
Ad 1):

dynamically reconfigure control domains’ network con-
figurations

create abstraction by use of virtual network bridges

create a management system spanning dedicated net-
work devices (hardware switches) as well as software
elements hosted both on general purpose hardware
(e.g. firewalls) and on virtualized hardware

Enhance control domains to make full use of the param-
eter ranges enabled by network protocols (e.g. 4096
virtual LANs per Ethernet interface)

Ad 2):

Enable control domains’ and virtual servers’ to migrate
even with full range of network setting parameters in
use

Ad 3):
Enable storage to be accessed via network protocols
Create storage which is independent from access path
Ad 4):

create a multi-tenancy enabled management system,
which is able to run inside a virtual server instance
which is hosted on the platform which it is managing

In case the management system is running outside the
platform, redundancy of the platform is linked to redun-
dancy of the external platform, thus implementation of
the external management platform requires solution of
exactly the same problem as for the production platform.

These problems are solved with the proposed architec-

ture, thus the management system can be placed in a

virtual platform and run on the highly available fault

tolerant platform. To be considered is a set of simple
rules, e.g. the management system should not shut down
its own host.

The platform has to be able to run without the manage-
ment system

The control domains have to be enabled to distribute
configuration data

The control platforms have to be enabled to evaluate
configuration data

The control platforms are required to manage the run
status of all virtual platforms which are required to
keep the management system up and running (in spe-
cific the storage stack and the virtual platforms the
management system itself is running in)

Create GUIs for all functionality in a way that average
skilled operations staff can operate the platform and
only troubleshooting requires expert knowledge

Ad 5):

Build an algorithm to centrally manage all security rel-
evant settings and check for consistency

Derive connectivity matrix from configuration param-
eters of virtual servers and automatic translation into
firewall rules which are updated dynamically

Enable automatic updating of all security settings,
regardless of the instance in an service interruption
free way

Manage all accounts centrally

Update account information to virtual servers based on
central repository (e.g. SVN interface to management
system)

Ad 6):

Manage backbone networks centrally

Store backbone networks configuration data centrally

Create interfaces to relevant equipment (e.g. MPLS
route reflection server)

10

15

20

25

30

35

40

45

50

55

60

18

This set of features enables a customer to configure and
order a full fletched data center without manual interaction on
the provider side. All data can be entered in the corresponding
GUIs and as soon as payment is guaranteed the customer can
be informed, e.g. via mail or any other communication
method about his access details (hostnames, usernames, pass-
words).

Provider—Customer Interface between Hardware and Oper-
ating System in Virtualized Environments

In an embodiment, it is advantageously possible to create a
customer-provider interface between hardware and operating
system in order to enable advanced business models on host-
ing platforms, e.g. Virtual-Server-as-a-Service or Virtual-
Data-Center-as-a-Service. Enhancement of interface is
required as currently not all functions the customers need are
sufficiently separated and secured against other customers
and providers’ functions and data.

Required functions:

Console output visible for customers (but only of custom-

ers’ instances)

Resources visible, but only those assigned to the customer
(e.g. hardware devices, etc)

Access to control domain, but only in limited way
(“SELinux-Dom0”) in order to handle configuration
files, console output etc, but without(!) the possibility to
either execute uploaded files or execute other than the
foreseen files

Access to redundancy settings of virtual platforms (e.g. xen
config files)

Access to relevant repository branches in required mode
(read-only or read-write mode) for required parameters
(user names, passwords, etc). Consider read-only sys-
tems

Access to resource management systems in case not
instances created by the provider but “raw” resource
chunks are provided

Resource usage conditions implemented in management
system (amount of virtual server instances which can be
created, max. number of CPUs per instance, max. RAM
per instance, amount of storage capacity, RAID level,
number of logical volumes (with which RAID level),
etc)

iSCSI Multipath as an Example for a Redundancy Mecha-
nism

In an embodiment, it is advantageously possible to use
iSCSI in a multipath configuration in which one iSCSI initia-
tor writes over more than one (i.e. two) paths via two targets
to one physical storage resource (i.e. a disk). In this configu-
ration both paths are used in parallel, data is distributed to the
paths in round-robin mode. In case one target, resource,
device or any other component of one path fails, the path
becomes unavailable. In this case the path is reported to be
unavailable after the configurable timeout threshold. This
configurable value constitutes a hard value for the timeout
corresponding to the failover timeout in classical configura-
tions. Unlike classical configurations, this value is determin-
istic as normal operation does not differ from operation in
failure case. In fact, no actual failover happens as operation is
resumed as normal with just one path out of use during the
time of the failure.

In order to implement such a feature, the iSCSI target (the
controller component) needs to have the following character-
istics:

It has to expose its resources by industry standard iSCSI

It has to synchronize the status of all write commands
between all paths

US 9,135,018 B2

19

In order to do that, all iSCSI discover and login events have
to be propagated to all controllers

All controllers need to be able to connect to all storage
resources

A storage resource must be mounted in a write lock enabled
way

Storage resources must provide the capability to be
abstracted by standard mechanisms, e.g. 1 vm

Storage resources must provide the capability to be secured
against failure of one or more components, e.g. by using
RAIDI1 systems or Reed-Solomon based replication

All traffic on all external interfaces must provide the option
to be encrypted

All iSCSI functions must be available on the platform, but
not necessarily on a specific interface

Network layer mechanisms must be supported (e.g. VRRP,
routing protocols, etc)

In an embodiment, synchronization of multiple iSCSI tar-

gets in active/active mode is possible.
Autonomy of Virtualized Instances

Basis of a cluster availability of hardware on which the
cluster may execute. The more independent hardware ele-
ments are available, the higher the availability.

In case of virtualized environments, each node can be
considered to be the member of a capacity resource pool,
which includes all nodes to which the virtualized servers of
the host can be migrated or on which they can be restarted. In
this case virtual servers which are hosted on a host which has
to be shut down can be migrated to another host running a
migration compatible virtualization solution. In case the host
is crashing, a management system logically superior to the
control domain of the virtualized host can thus restart the
virtual machine on any other virtualized host is has access to.
It is not required for the management system to be hosted on
specific hardware, it may as well be hosted on the virtualiza-
tion platform itself. This operation is comparable to the tasks
classical clusters have to perform on specific processes and
thus does not take more time. This enables the management
system to act as a single redundancy controller.

In order to be able to do that under all circumstances, the
hosts have to fulfill certain requirements, which make them
really autonomous from the perspective of the management
system.

The objective is to make all domO autonomous working
entities, which can start and perform independent from the
degree of capacity reduction the platform experiences over-
all.

The requirement for autonomy can be broken down into the
following set of features:

The usage of all data is restricted to the control domain
space of the virtual data center, no other data is to be
used, as in case of failure no external communication
channel can be assumed to be functioning

To run not only the host itself, but make its resources
available for operation of the platforms virtual servers
which are running the applications. This can mean start-
ing specific servers as well as shutting virtual servers
down. It may even mean to shut a server down in order to
free resources to be used by another one which has
higher priority.

All configuration data and parameters required for the host
to run itself and to perform the management functions of
its virtual servers are to be stored locally, most probably
on physical devices attached to the host. The tasks to be
performed may depend on the situation. E.g. may a host
which is restarting after a failure and detecting that no
external communication exists execute a rule to start the

15

20

25

30

40

45

55

60

20

management system exclusively, while a host detecting
fully functioning connections may starting virtual server
in their order of priority until all available resources are
consumed.

Local storage of data, which does not create dependencies
between hosts creates the need for an automated ver-
sioning and distribution mechanism. In case a specific
data element is changed, the corresponding changes
have to be propagated to all hosts forming the platform.
Thus this system needs to be a distributed system run-
ning on all hosts.

As changes may occur and can also be rolled back an
automated versioning is required. The versioning sys-
tem is as well required to run on all hosts in a distributed
way.

In case execution of a certain set of configuration data fails,
a roll back has to be implemented to the latest version
known as functioning on this host. Thus a rollback
mechanism has to be included, which works on each
host independently. This can be realized by storing con-
figuration on spare partitions, so the control domain can
boot from the spare. Falling back to the original device is
done by using volume manager stack.

In order to avoid interference with other scenarios, such as
data changes on one host happening at a time another
host is out of operation and thus unreachable for the
automatic distribution mechanism, each host has to
check at least after starting and depending on the action
before executing the corresponding action, if the avail-
able version of data is the latest available one across the
overall platform.

All data for all upper layers objects that are to be controlled
from the host has to be on the platform. In case scenarios
exist that require running virtual platforms on each
server, each server needs to store all data. However, the
data is to be checked prior to interpretation or execution
if applicable to the corresponding host in the corre-
sponding situation.

The requirement for local storage is not a functional
requirement, yet a matter of experience. Provided a cen-
tral storage exists, which provides the required availabil-
ity, the hosts might use this as well and access the
required data on this storage.

All rules have to be suited for local execution (no remote
paths, data, input or triggers)

Configuration data may not consist of data only, but also
include scripts which are executed on the host

In case scripts are executed on the host, they have to pro-
vide a possibility to flag successful execution.

Redundant Distributed Block Devices

In an embodiment, it is advantageously possible to provide
storage which can be operated completely independent from
the operation of the servers using it. Such a solution would
need to:

1) Allow multiple paths to any object

2) Update all status information synchronously to all
redundancy units relevant for a certain object exposed to
a host

3) Appear to the hosts using it as a normal physical device

4) Enable access by a network interface which is both
industry standard and able to reroute (e.g. fibre channel,
Posix compliant distributed file systems, or iSCSI)

5) It has to be transparent and abstracted from the format-
ting activities of the host, in specific, it must not pose any
restrictions with regards to file systems or usage pattern

6) It has to distribute all data according to redundancy
configuration

US 9,135,018 B2

21

7) Redundancy configurations have to be able to consider
restrictions of the underlying hardware and topology,
e.g. creation of redundancy areas considering buildings,
sites, power supply areas, etc.

8) It has to consider physical distance of machines (“rack
awareness”) in order to allow storage of data as close as
possible to the user

9) It has to be able to configure the degree of redundancy
separately for each object in a way that both the number
of copies to be stored and the number of copies required
for restoration of data can be configured separately (n:m
redundancy)

10) It has to be able to run higher layer formats, in specific
file systems, which are not restricted in the type of inter-
face towards the host (POSIX)

11) It has to be able to run in a virtualized environment

12) It has to provide the capability to find each data sniplet
from each entry point

13) It has to provide the capability to relocate each sniplet
to each physical device

14) It has to provide self-controlling functionality in order
to re-arrange sniplets in a way that makes optimal use of
available physical storage capacity

15) It has to be able to configure synchronous or asynchro-
nous

16) It has to consider transmission time delays in case of
re-arranging or re-locating sniplets, while providing the
capability for an “enforcement” of both modes even if
not appropriate (e.g. in case synchronous mode is
requested for copying active sniplets to a remote site,
creating delays due to transmission delay, this can be
required, however, to shift data in a way that follows the
migration of a virtual machine)

17) In case of failures of one or more nodes have the
remaining nodes to be able to resume operation seam-
lessly with the remaining nodes and data sniplets

18) Failure of a specific gateway shall not create any inter-
ruption in service, it merely leads to the fact that the
failing node is deleted from the list of status synchroni-
zation targets

19) The system has to provide the capability to take new
nodes added to the system in operation fully automatic
and seamlessly for any other node (Added storage
capacity is signalled to the system and subsequently
used by the distributed algorithms which optimise
capacity usage (copying of sniplets starts automati-
cally),

Redundancy Control in Virtualized Environments

In an embodiment, it is advantageously possible to apply
redundancy control aligned with virtualization in a fully vir-
tualized environment.

Redundancy control has to be based on the control domain
of the virtualization platform

It is not acting on application specific processes, rather on
virtual servers, i.e. it guarantees that one and only one
instance of each virtual machine is running.

It is a single mechanism, implemented in a distributed way

It acts on data which is made available to the control
domain, but it does not provide these data. Provisioning
of these data would require a highly complex system,
which is not only executing rules, but also aligned with
overlying management functions

It is invoked by the control domain’s operating system
process after boot is completed.

Integrity of data is ensured by an external mechanism

The system does not show any scalability limits, as it is able
to provide redundancy on application server level with-

15

20

25

30

35

40

45

50

22

out knowing specifics about processes, resources or their
dependencies on application level.

Requirements for applications are restricted to the capabil-
ity for being able to be restarted, in the same way as this is
required by classical clusters. However, the mechanism does
not require any cluster integration, no scripts or any other
customization, as the objects are standardized all which is
required can be done by means of configuration.

Online Simulation of Virtual Platforms

In an embodiment, it is advantageously possible to omit all
steps currently employed in network planning and replace it
by simulation of the virtualized environment. Compared to a
non-virtual environment, which’s simulation is a prohibi-
tively complex task, virtualized environments can be simu-
lated as their building blocks provide interfaces with strong
abstraction of the underlying functions. Redundancy which is
implemented in the classical way of tying resources and their
spares together, requires in-depth knowledge of process
architectures, network architecture and hardware resources.
A fully virtualized platform behaves in a way that allows
considering complex applications as being represented by the
operating system process hosting them. Storage connected
via iSCSI and abstracted by a suited protocol stack allows
managing and thus simulating storage completely indepen-
dent from server hardware.

The functions to be implemented in a management system
are based on

The data centers connectivity matrix

Geographical dependency of resources (see “Resource and

Redundancy Management in virtualized Environ-
ments”)

They include

Check impact on virtual server/host/site/connection failure

by evaluating impact on connectivity matrix

Check impact on redundancy in case specific hardware

resources are lost

Check security by simulating propagation of viruses or

malware, spread trajectories of intruders, etc

Validate firewall settings

Validate network traffic prioritization settings

This requires

matching of used IP network parameters (IP addresses,

ports, host names)

run load balancing mechanism of management system in

“dry run” (switch off machines and check redistribution
run routing protocols to detect failover routes in case of
network errors

Check load situations with regards to consumed server

(processor and RAM consumption), network (switches,
routers, hosts’ hardware interfaces) and firewall
resources

Embodiments of the present invention will be described
below with respect to particular embodiments and with ref-
erence to certain drawings but the invention is not limited
thereto but only by the claims. The drawings described are
only schematic and are non-limiting. In the drawings, the size
of'some ofthe elements may be exaggerated and not drawn on
scale for illustrative purposes.

Where an indefinite or definite article is used when refer-
ring to a singular noun, e.g. “a”, “an”, “the”, this includes a
plural of that noun unless something else is specifically
stated.

Furthermore, the terms first, second, third and the like in
the description and in the claims are used for distinguishing
between similar elements and not necessarily for describing a
sequential or chronological order. It is to be understood that
the terms so used are interchangeable under appropriate cir-

US 9,135,018 B2

23

cumstances and that the embodiments of the invention
described herein are capable of operation in other sequences
than described of illustrated herein.

FIG. 1 is a block diagram illustrating virtual instances
106a, 1065 in a physical node 202. The virtual instances
106a, 1065 run in physical node 202. The physical node 202
may be a stand-alone server. The virtual instances 106a, 1065
are controlled by a virtualization operating system 204 such
as VMWare, Microsoft Virtual Server, Xen, and so forth. The
virtual instances 106a, 1065 further include agents 206a,
2065. The agents 206a, 2065 are application programs that
communicate with a controller to receive instructions from
the controller for the virtual instances 106a, 1065, and act on
directives issued by the controller. The agents 2064, 2065 also
report the status of the virtual instances 106a, 1065 to the
controller periodically. For example, the virtual instance 106a
and the virtual instance 1065 include the agent 2064 and the
agent 2065 respectively.

FIG. 2 is a block diagram illustrating a computer cluster
108, in accordance with an embodiment of the invention. A
plurality of stand-alone nodes 302a to 302z, hereinafter
referred to as stand-alone nodes 302, may be organized in the
computer cluster 108. Stand-alone node 302 may be defined
as, but is not limited to, a server that has its own memory and
processing attributes. Stand-alone node 302 of computer
cluster 108 are e.g. connected to layer 2 interconnect fabric by
means of the ports on a switch 304. The stand-alone servers
302 occupy the ports of the switch 304. Each stand-alone
node 302 also includes a remote management Network Inter-
face Card (NIC) 306 and an agent 308. For example, a stand-
alone node 302¢ includes a remote management NIC 3064
and an agent 308a. Further, switch 304 includes a plurality of
ports 310 and a plurality of ports 312. Ports 312 are reserved
for providing connectivity to external appliances. Ports 310
provide connectivity to each stand-alone node 302. For
example, port 310a provides connectivity to stand-alone node
302a. Remote management NIC 306 connects stand-alone
node 302 to a management system. The functionality of the
agents 308 is similar to that of the agents 206. Agents 308
receive instructions from controller for stand-alone nodes
302, and act on directives issued by the controller.

FIG. 3 depicts schematically a computer cluster 10 accord-
ing to a further exemplary embodiment of the present inven-
tion. The computer cluster 10 includes a first compartment 11
and a second compartment 12. The first compartment 11
includes a plurality of first physical nodes 21. Each first
physical node 21 includes a first partition 31, a second parti-
tion 32 and a third partition 33. The second partition 32
provides resources for a first infrastructural virtual instance
41. The second compartment 12 includes a plurality of second
physical nodes 22. Each second physical node 22 includes a
fourth partition 34, a fifth partition 35 and a sixth partition 36.
The fifth partition 35 provides resources for a second infra-
structural virtual instance 42. The first infrastructural virtual
instance 41 and the second infrastructural virtual instance 42
are configured for monitoring each other. The plurality of
third partitions 33 and the first infrastructural virtual instance
41 are connected in a first storage network and the plurality of
sixth partitions 36 and the second infrastructural virtual
instance 42 are connected in a second storage network. These
storage networks preferably include iSCSI networks or net-
works using TCP/IP. Preferably the plurality of second parti-
tions 32 are connected in a RAID1 system and the plurality of
fifth partitions 35 are connected in a further RAID1 system.
The second resources and the fourth resources are preferably
provided for telecommunication applications. The first infra-
structural virtual instance 41 and the second infrastructural

10

15

20

25

30

35

40

45

50

55

60

65

24

virtual instance 42 provide disaster recovery means, wherein
preferably the first infrastructural virtual instance 41 and the
second infrastructural virtual instance 42 are connected in a
master-slave configuration, i.e. in case that both the first infra-
structural virtual instance 41 and the second infrastructural
virtual instance 42 are operational, one of the first infrastruc-
tural virtual instance 41 and the second infrastructural virtual
instance 42 acts as a master virtual device and the other acts as
a slave virtual device, and in case that the master virtual
device fails the slave virtual device becomes the master, and
in case that only one of the first infrastructural virtual instance
41 and the second infrastructural virtual instance 42 is opera-
tional, then the operational infrastructural virtual instance is
the master virtual device and the other infrastructural virtual
instance is activated and becomes the slave virtual device.

The invention claimed is:

1. A computer cluster, comprising:

a first compartment comprising a plurality of first physical
nodes configured to provide first resources for a first
infrastructural virtual instance and second resources for
guest virtual instances, each of the plurality of first
physical nodes comprising a first mass storage device,
the first mass storage device comprising:

a first partition provided for booting the first physical
node;

a second partition as part of the first resources assigned
to the first infrastructural virtual instance; and

a third partition as part of the second resources; and

a second compartment comprising a plurality of second
physical nodes configured to provide third resources for
a second infrastructural virtual instance and fourth
resources for guest virtual instances, each of the plural-
ity of second physical nodes comprising a second mass
storage device, the second mass storage device compris-
ing:

a fourth partition provided for booting the second physi-
cal node;
a fifth partition as part of the third resources assigned to
the second infrastructural virtual instance; and
a sixth partition as part of the fourth resources;
wherein the first infrastructural virtual instance and the
second infrastructural virtual instance are configured for
monitoring each other and for finding each data sniplet
of a data object from each entry point based on labeling
each data sniplet with an identifier, the identifier includ-
ing information for linking the data sniplet to other data
sniplets for recreation of the data object as a multiple
linked list;

wherein the plurality of the first physical nodes and the
plurality of second physical nodes are configured to,
when a node uses an amount of its resources exceeding
athreshold amount, relocate and relabel the data sniplets
of the data object based on transmission time delays,
wherein the transmission time delays are based on round
trip time measurements corresponding to the data snip-
lets.

2. The computer cluster according to claim 1, wherein the
plurality of third partitions and the first infrastructural virtual
instance are connected in a first storage network, and wherein
the plurality of sixth partitions and the second infrastructural
virtual instance are connected in a second storage network.

3. The computer cluster according to claim 1,

wherein the first compartment comprises a first militarized
zone and a first demilitarized zone, and the second com-
partment comprises a second militarized zone and a
second demilitarized zone;

US 9,135,018 B2

25

wherein in the first militarized zone only a restricted data
exchange compared to the first demilitarized zone is
allowed,

wherein in the second militarized zone only a restricted
data exchange compared to the second demilitarized
zone is allowed;

wherein each first physical node in the first militarized
zone comprises a seventh partition as part of fifth
resources for a first administrative virtual instance; and

wherein each second physical node in the second milita-
rized zone comprises an eighth partition as part of sixth
resources for a second administrative virtual instance.

4. The computer cluster according to claim 1, wherein the
plurality of second partitions are connected in a RAID1 sys-
tem and the plurality of fifth partitions are connected in a
further RAIDI1 system.

5. The computer cluster according to claim 1, wherein the
second resources and the fourth resources are provided for at
least one telecommunication application.

6. The computer cluster according to claim 1, wherein the
first infrastructural virtual instance and the second infrastruc-
tural virtual instance provide for disaster recovery.

7. The computer cluster according to claim 1, further com-
prising:

a third compartment, further comprising a plurality of third
physical nodes configured to provide seventh resources
for a third infrastructural virtual instance and eighth
resources for guest virtual instances; and

a fourth compartment, further comprising a plurality of
fourth physical nodes configured to provide ninth
resources for a fourth infrastructural virtual instance and
tenth resources for guest virtual instances;

wherein the third infrastructural virtual instance and the
fourth infrastructural virtual instance are configured for
monitoring each other.

8. The computer cluster according to claim 1, wherein

one of the first infrastructural virtual instance and the sec-
ond infrastructural virtual instance is configured to act as
a master virtual instance with the other of the first infra-
structural virtual instance and the second infrastructural
virtual instance being configured to act as a slave virtual
instance when both the first infrastructural virtual
instance and the second infrastructural virtual instance
are operational, and the slave virtual instance is config-
ured to become the master virtual instance if the master
virtual instance fails; and

at least one of the first infrastructural virtual instance and
the second infrastructural virtual instance is configured
to act as a master virtual instance with the other of the
first infrastructural virtual instance and the second infra-
structural virtual instances being configured to be acti-
vated and act as a slave virtual instance when only one of
the first infrastructural virtual instance and the second
infrastructural instance is operational.

9. The computer cluster according to claim 3, wherein

one of the first administrative virtual instance and the sec-
ond administrative virtual instance is configured to act as
amaster virtual instance with the other of the first admin-
istrative virtual instance and the second administrative
virtual instance being configured to act as a slave virtual
instance when both the first administrative virtual
instance and the second administrative virtual instance
are operational, and the slave virtual instance is config-
ured to become the master virtual instance if the master
virtual instance fails; and

at least one of the first administrative virtual instance and
the second administrative virtual instance is configured
to act as a master virtual instance with the other of the

10

15

25

30

35

40

45

50

60

26

first administrative virtual instance and the second
administrative virtual instances being configured to be
activated and act as a slave virtual instance when only
one of the first administrative virtual instance and the
second administrative instance is operational.

10. A method for providing disaster recovery functionality

for a computer cluster, the method comprising:

operating at least one of a first infrastructural virtual
instance and a second infrastructural virtual instance,
wherein the first infrastructural virtual instance corre-
sponds to a first compartment of the computer cluster
and comprises a plurality of first physical nodes config-
ured to provide first resources for a first infrastructural
virtual instance, and wherein the second infrastructural
virtual instance corresponds to a second compartment of
the computer cluster and comprises a plurality of second
physical nodes configured to provide third resources for
a second infrastructural virtual instance; and
when both the first infrastructural virtual instance and the
second infrastructural virtual instance are operational:
operating one of the first infrastructural virtual instance
and the second infrastructural virtual instance as a
master virtual instance; and
operating the other of the first infrastructural virtual
instance and the second infrastructural virtual
instance as a slave virtual instance; and
if the master virtual instance fails, operating the slave
virtual instance as the master virtual instance;
when only one of the first infrastructural virtual instance
and the second infrastructural instance is operational:
operating the operational infrastructural virtual instance
as a master virtual instance;
activating the other infrastructural virtual instance; and
operating the other infrastructural virtual instance as a
slave virtual instance;
wherein the first infrastructural virtual instance and the
second infrastructural virtual instance are configured for
monitoring each other and for finding each data sniplet
of a data object from each entry point based on labeling
each data sniplet with an identifier, the identifier includ-
ing information for linking the data sniplet to other data
sniplets for recreation of the data object as a multiple
linked list;
wherein the method further comprises: when a node uses
an amount of its resources exceeding a threshold
amount, relocating and relabeling, by the plurality of the
first physical nodes and the plurality of second physical
nodes, the data sniplets of the data object based on
transmission time delays, wherein the transmission time
delays are based on round trip time measurements cor-
responding to the data sniplets.
11. The method according to claim 10, wherein:
the first compartment comprises a first militarized zone and
a first demilitarized zone, and the second compartment
comprises a second militarized zone and a second
demilitarized zone;
in the first militarized zone only a restricted data exchange
compared to the first demilitarized zone is allowed;
in the second militarized zone only a restricted data
exchange compared to the second demilitarized zone is
allowed,
each first physical node in the first militarized zone com-
prises a seventh partition as part of fifth resources for a
first administrative virtual instance; and
each second physical node in the second militarized zone
comprises an eighth partition as part of sixth resources
for a second administrative virtual instance.

#* #* #* #* #*

